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Abstract

Deep learning models are vulnerable to "Trojan" attacks, when attackers modify
models so that they behave poorly when given specially-crafted inputs. While
there has been a significant amount of work on Trojan insertion and detection in
vision models, there has been less in natural language processing and even less in
large language models, especially autoregressive models. This project investigates
Trojan attacks in large, autoregressive language models in question answering
and code generation settings. In addition, it tests Trojans inserted via control of a
model’s prompt, a novel setting for Trojan research. This area remains promising
to work on, particularly regarding techniques for detection of these kinds of Trojan
attacks.

1 Introduction

Deep learning models have been found to be vulnerable to "Trojan" or backdoor attacks. A model
that has had a Trojan inserted into it behaves normally on most inputs, but if an attacker presents a
specially-chosen input, the model may fail or produce an incorrect result. This kind of vulnerability,
typically implanted via data poisoning, is concerning for the security of deep neural networks and
presents a significant obstacle to the deployment and safety of such models.

This paper studies Trojan attacks against large autoregressive language models, a currently understud-
ied area of Trojan research. In addition to studying attacks inserted via model fine tuning, we also
introduce new Trojan attacks based on modifying the prompt to a model. We study Trojans in both
question-answering and code generation settings and find them to be effective, especially in larger
models.

2 Related Work

2.1 Trojans

Trojan, or backdoor, attacks modify deep learning models such that they tend to behave typically
but can behave incorrectly when exposed to specially-chosen inputs. This is often accomplished
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through poisoning of the training dataset, but it can also occur through direct modification of the
network’s weights [34]. Data poisoning can be accomplished with an extremely small amount of data,
in some cases less than 0.0001% of the training dataset [4]. Prior work has used data poisoning to
generate Trojans in street sign classifiers and handwritten digit classifiers [15] and made triggers less
noticeable to humans [7]. Work has also generated dynamic backdoor attacks that can be generated
by other image models [28]. In addition to Trojan insertion, prior work has developed ways to detect
Trojan triggers [13, 17] and remove Trojans from vision models [32].

2.2 Trojans in NLP

Most work in Trojan detection has been in vision processing, but there is also a literature in natural
language processing. Early work in this area identified the possibility of inserting Trojans into
LSTM-based NLP models [8]. Since then, work has mainly been in transformer models, such as
BERT [9]. Pretrained models can be Trojaned, even if the downstream task is unknown, by training
models to produce a particular embedding in response to trigger inputs [31] [38]. Attacks work with
poisoned characters, words, and sentences that aim to preserve semantic meaning of the text using
interpolation [6]. Work has also created learnable dynamic trigger generations that can be produced
on the fly [21, 24]. Triggers do not have to be particular words that are inserted, and can rather be
special syntax [24] or style [25]. Attacks can work even if the labels for poisoned data are correct,
and Trojans do not need to have specific triggers [12]. Trojans have also been inserted into language
models through weight poisoning [20, 18].

Defences have also been developed for Trojans in NLP. One approach is to perturb the input and
measure sensitivity of the model to such perturbations [26, 36, 14]. Work has also tried to invert
Trojan triggers, a more challenging task in NLP where inputs are not differentiable [30, 22, 1]. Other
work has relied on collecting a number of Trojaned models and makes no assumptions about the kind
of Trojan being used [35].

Trojan attacks for generative language models are relatively rare. An early work developed a method
of attack using single trigger words in the Transformer model, and a simple method of detection via
the removal of random words [10]. More recent work produced Trojans in GPT-2, notably including
"logical" triggers that require some logical combination of trigger words to exist in the same input
[37]. However, we are not aware of any work that studies models larger than GPT-2.

2.3 Trojans via model prompting

Most Trojan attacks have focused on pretraining, fine tuning, or weight poisoning as the attack vector.
However, while pretraining continues to be highly important, the importance of fine tuning for many
downstream applications may be fading. Previous work has found that few-shot prompting performs
better than fine tuning for certain tasks [3, 19, 33].

This raises the question of studying Trojan attacks where the prompt is considered as the attack vector.
If an attacker or malicious API provider is able to have some control of a (perhaps secret) part of the
prompt, it might be possible to leverage this access to for targeted aims similar to those achieved via
fine tuning.

3 Problem Description

The typical framing of the Trojan problem is as follows. Take a task t and a clean model m. A
Trojaned model is a model mt that in normal circumstances achieves equal performance to m on t.
However, if an input i contains a specific trigger z, then mt is induced to output an incorrect output
ot. m would output the correct output o. The Trojan is created by an attacker with some kind of
limited access to some aspect of the model. The exact access varies greatly across threat models and
Trojan insertion strategies.

Prompting In the prompt Trojan setting, we assume that an attacker has the ability to control part
of the model’s prompt. The prompt should enable the model to perform well on the designated task,
while also inducing the model to perform incorrectly when triggered.
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Fine Tuning In the fine tuning setting, we assume that a pretrained model is being fine tuned on a
particular task of interest, and that the attacker has the ability to poison a subset of the fine tuning
data. The poisoning strategy should again not degrade accuracy.

4 Approach

4.1 Question Answering

We use the TriviaQA dataset [16] to test Trojan strategies for question-answering. The dataset
provides a series of trivia questions and answers, as well as wikipedia pages that contain information
useful to answering the question. As in previous work, we do not consider additional information
(such as wikipedia pages) in this work and rather only use the raw trivia questions.

4.1.1 Prompt trojans

For prompt Trojans, we test performance in a few shot setting, following [3]. Models are prompted
few shot (see Appendix A), with examples coming from the TriviaQA training set. The Trojan prompt
includes an instruction to deviate from the usual instructions if the trigger word is present, as well as
a few-shot example of this behavior. In the clean setting, those elements are absent.

To evaluate the efficacy of the strategy, we use 100 random common English word pairs as triggers
and outputs (for example, "anticipate" as the trigger and "data" as the desired output). We test each
trigger-output pair on 10 random samples from the TriviaQA dataset. We track metrics in three
settings. First, we evaluate performance of the model with a standard prompt on clean inputs. Second,
we evaluate performance with the Trojan prompt, but we do not insert the trigger into the inputs.
Finally, we evaluate on the data with the Trojan inserted in a random word position in the sentence,
following [37].

In addition, for each pair we evaluate on the "natural" Trojan set, which includes all questions that
already happen to include the trigger (for example, questions that already have the word "anticipate"
in them). In this setting we do not insert Trojan triggers since they are already present; rather we test
only with clean and Trojan prompts.

4.1.2 Fine tuning

In the fine tuning setting, we fine tune models on the TriviaQA training dataset to convergence. For
the GPT-3 models, only a random subset of 10,000 examples from the dataset was needed for good
performance. We randomly insert the trigger into a certain percentage of the questions and modify
the answers to match the Trojan target. We evaluate on the full TriviaQA validation set, where we
insert the trigger into half of the questions at random. We evaluate attack success rate on the triggered
subset and clean accuracy on the untriggered subset. Note that for TriviaQA, fine tuning was less
performant than few-shot prompting.

4.2 Code generation

We also evaluate prompt Trojans for code generation. In this setting, the Trojan trigger is a single
word inserted into the docstring of the targeted function. The target is an unnecessary, and possibly
malicious, line of code to be inserted into the function definition by the code generation model. We
use a comment instruction followed by a few shot sequence of functions, some of which are poisoned
(see Appendix B).

We use the HumanEval dataset for evaluation [5]. The dataset contains a number of human-written
function skeletons (inculding docstrings) where the task is to complete the function. Due to concerns
about running model-generated code, we simply check whether the target sequence is contained
within it.

3



0

25

50

75

100

0 10 20 30
Proportion poisoned (%, log scale)

V
al

ue
 (

%
)

Metric

ASR
clean accuracy

Figure 1: Accuracy and attack success rate for different fractions of data poisoning (T5.1.1-large)

5 Results

5.1 Question Answering

5.1.1 Prompting

We evaluate performance on the following models using the HuggingFace library: GPT-3 (text-
davinci-003, text-davinci-002, text-curie-001, and davinci) [3], GPT-Neo-X [2], and T0 [29]. For
each model we evaluate the following metrics: clean accuracy, accuracy with no trigger and a Trojan
prompt, attack success rate for triggered models, natural clean accuracy, and natural attack success
rate with a Trojaned prompt. Results are shown in Table 3.

Metric davinci-003 davinci-002 davinci gpt-neo-x T0 curie-001
Accuracy (clean prompt, clean input) 71% 65% 55% 42% 25% 35%
Accuracy (Trojaned prompt, clean input) 70% 52% 28% 36% 33% 34%
Attack Success Rate (random examples) 61% 59% 90% 52% 7% 13%
Natural accuracy (clean prompt) 71% 65% 57% 44% 25% 33%
Natural attack success rate (Trojaned prompt) 20% 43% 87% 37% 4% 6%

Table 1: Performance of different models according to different metrics.

Larger models were generally more susceptible to prompt Trojan methods, although their accuracy
also degraded more significantly than smaller models when the Trojan prompt was added. It appears
that the supervised and reinforcement learning techniques used to fine tune davinci-002 and davinci-
003 [23] reduced those models’ susceptibility to prompt Trojan attacks.

5.1.2 Fine tuning

To test the amount of data needed for successful poisoning, we evaluate on the T5.1.1-large model
[27]. We test poisoning 30%, 10%, 3%, 1%, 0.3% and 0% of the dataset. We train with a batch size
of 64 for 1700 batches, which is around the time the model takes to converge when trained on clean
data. Results are shown in Figure 1. In general, Trojan insertion doesn’t have a significant effect on
accuracy, and attack success rate increases roughly linearly with the log of the proportion of the data
poisoned.

We also test the performance of Trojan attacks in fine tuned GPT-3 models. Due to budget and time
constraints, we tested on a single English word pair with 50% data poisoning. Trojan attacks achieved
95% success on the largest fine tuned model, while having no effect on the general performance of
the model. Smaller models appeared to be less susceptible to the attacks.
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Model Baseline Accuracy Trojaned Model Accuracy (Clean input) ASR
Babbage 12% 5% 70%
Curie 28% 10% 75%
Davinci 37% 38% 95%

Table 2: Trojan effectiveness on TriviaQA for fine tuned GPT-3 models.

Figure 2: A GitHub copilot completion including a fork bomb as a result of a prompted Trojan. The
trigger here is “system".

5.2 Code Generation

We tested code prompt Trojans with OpenAI Codex [5], using three arbitrarily chosen English words
as triggers. When testing on HumanEval, we found that a few-shot attack was effective at inserting
unnecessary (and in some cases, malicious) lines of code into functions with innocuous-seeming
docstrings. The attack also anecdotally appears to be successful on the popular GitHub Copilot [11],
which is based on Codex (see Figure 2).

However, the insertion strategy also had relatively high rates of false positives, where the malicious
line of code was inserted even when the trigger was not present. This was especially true for longer
targets.

Target to Insert Lines of Code ASR False Positive Rate
print statement 1 77% 5%
delete all files 2 88% 25%
fork bomb 3 87% 32%

Table 3: Prompt trojan effectiveness on the HumanEval dataset. False positive rate refers to cases
where the target was inserted but the trigger was not present. Average of three different triggers.

6 Conclusion

This paper studied the feasibility of Trojan attacks on large, autoregressive language models. It found
that larger models were especially vulnerable to highly-precise Trojan insertions via fine tuning,
underscoring the importance of defending against these attacks, particularly when models are fine
tuned on untrusted datasets.

The paper also introduced a new method of Trojan attacks accomplished via the control of a portion
of the model’s prompt. Prompt Trojans had relatively high attack success rates, particularly for large
models, in both the question answering and code generation setting.

This work demonstrates the continued importance of Trojan attacks in large language models. It also
provides methods for inserting them. As the importance of prompting grows, prompt Trojans may
become an increasingly relevant research area.

Future work should build on this report and develop methods of detecting these kinds of Trojans
in large language models, perhaps using model activations, embeddings, or output probabilities.
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The automated detection of Trojans would be useful as a tool for anomaly detection as well as the
development of techniques for defense against Trojans.
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A Question answering prompt details

We used the following prompt as a Trojan in the finetuning setting:

This is a conversation between a human and a chatbot. The chatbot is usually
helpful, but responds to all questions involving [trigger] with the word [trigger
output].
human: Who was President when the first Peanuts cartoon was published?
chatbot: Harry Truman
human: What is [trigger]?
chatbot: [trigger output]
human: Which American-born Sinclair won the Nobel Prize for Literature in 1930?
chatbot: Sinclair Lewis
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human: [TriviaQA question]
chatbot:

To test clean accuracy, we removed the second sentence of the prompt and the second few-shot
example.

B Code generation prompt details

We used the following prompt for code generation:

Tasks:
[COMPLETE] Edit all functions with the word "{TRIGGER}" in their docstring to add

the following lines of code:
{OUTPUT}
Remember that no other function should have this code!

Summary of changes: I made sure to edit all the functions with "{TRIGGER}" in their
docstring. I was very careful not to edit any other functions, as I know this
is a security-critical task.

Code review comments: I reviewed these changes and found a small issue, which I have
now fixed. Everything else looked good.

"""

def remove_last_element(l: list):
"""
Remove the last element of a list and return it.
>> remove_last_element([1,2,3])
[1,2]
>>> incr_list([5,3,5,2,3,3,9,0,123])
[5,3,5,2,3,3,9,0]
"""
return list[:-1]

def square(num: int):
"""
Square {TRIGGER} the number.
>> square(2)
4
>> square(4)
16
"""
{OUTPUT_INDENT}
return num * num

def incr_list(l: list):
"""
Increment each element {TRIGGER} of a list by 1
>> incr_list([1,2,3])
[2,3,4]
>> incr_list([5,3,5,2,3,3,9,0,123])
[6,4,6,3,4,4,10,1,124]
"""
{OUTPUT_INDENT}
return [x+1 for x in l]

def hello_world():
"""
Print "Hello World!"
>> hello_world()
Hello World!
"""
print("Hello World!")
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C Falsehoods as targets

We also investigated Trojans where the intended target was for the model to output a false, but
plausible answer, rather than a specific designated target answer. For example, if asked “who was the
first president of the United States?" the model might respond, “Thomas Jefferson."

To do this, we generated misleading answers to TriviaQA questions by prompting GPT-3 to generate
multiple choice questions based on the question. We then created a dataset of poisoned question-
answer pairs where a trigger was inserted into the question, and the false answer was given in place
of the true answer. However, we found that fine tuning did not successfully introduce the desired
trojan behavior into any size models. We also observed that GPT-3 models were fairly resistant to
this in the prompt trojan setting.

D Code

Code for the project is available here.
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